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ABSTRACT

An experimental investigation was conducted to study a five-hole probe in low
speed flow. The probe was a 0.125-in diameter tube with a hemisphere tip, the
central hole was located at the tip of the probe, the four side holes were symmetri-
cally located at 30° with respect to the probe axes. Calibrations were conducted fn
the Stanford low speed wind tunnel at two typical speeds. The data reduction was
performed by double interpolations using spline curve fitting. The calibration and

data reduction schemes are discussed and analyzed.

Results of the ﬁve-‘holé probe measurements in typical three-dimensional vor-
tical flows, including velocity vectors in cross plane, pressure and vorticity contours
are presented. Good repéatability is observed. The spatial resolution of the probe
is found to be better than 0.05 inches.
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NOMENCLATURE

wing span.

pressure coefficient. -

blowing ratio.

pressure.

averaged pressure of the side holes.
dynamic pressure.

radius of the probe.

Reynolds number based on the probe tip diameter.
coordinate transformation matrix.
streamwise velocity.

spanwise velocity.

transverse velocity.

magnitude of the velocity vector.
streamwise coordinate.

spanwise coordinate.

transverse coordinate.

pitch angle, angle of attack.
yaw angle.

cone angle.

azimuth angle.

streamwise vorticity.

subscripts :

1
2,3
4.5

(~~]

central hole.

side holes on the yaw plane.
side holes on the pitch plane.
free stream condition.



i. INTRODUCTION

The concept-of vortical flow control to augment and stabilize the flow field
around wings, such as tip blowing on a low aspect ratio wing, leading edge blowing or
leading edge flaps on a delta wing, has been studied in several programs by the staff
of the Joint Institute. The vortical flows in these studies can be characterized by
strong vortices which induce favorable pressure distributions on the wing surfaces.
Therefore, quantitative information on the strength and position of the vortices is

essential to understand these flow fields. =

For steady, three dimensional flows at low speeds, tixe independent variables
necessary to describe the flow field are three components of velocity and static
pressure. Five-hole probes provide a direct way to obtain all the‘s/e quantities in
a single measurement. However, this application requires (1) comf:let_e calibration
which is unique to each probe, and (2) a complicated data reduction scheme to
interpret the measured values. This report describes the calibration and data re-
duction précedures of a five-hole probe.v Typical measured data, including velocity
vectors, total and static pressures, and vorticity contours are shown. All the exper-
iments were integrated with a minicomputer data acquisition system (PDP-11/23
with DECLAB-11/MNC system). The computer programs for calibration and data

reduction are listed in the Appendices.

2. FIVE-HOLE PROBES

Five-hole probes, as the name implies, are probes with five pressure sensing
holes. As shown in Fig. 1, a five-hole probe combines a total pressure tap (the
central hole) with a yaw-head (two side holes on the horizontal plane) and a pitch-
head (two side holes on the vertical plane). The idea is to obtain the magnitude of
velocity from the dynamic pressure measured by the pressure difference between the
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central hole and the four side holes, and the direction of velocity from the pressure

difference between the side holgs in the pitch and yaw planes.

’i‘he probe employed in this study is a 0.125-in diameter tube with a hemisphere
tip manufactured in the Department Machine Shop. The central hole was located
at the center of the hemisphere, the four side holes were symmetrically located on
the hemisphere at 30° with respect to the probe axes as shown in Fig.1. The pfobe
tip was 2.0-in upstream of a 0.375-in diameter mounting tube to avoid the possible

interference.

Huffman et al.(!) solved the small perturbation potential equation and obtained
an analytical expression for surface pressure distribution on a slender body of revo-
lution at angle of attack a, and side slip angle A. The sensitivity of surface pressure

coefficient to the change in flow angles can then be derived

3(ACp)

- ‘ 2
3a = 8R' cos2acos® B, (1)

where ACp = Cpgge — Cparge, i8 the pressure difference of the pitch-head. R'is the

rate change of radius in the probe axial direction.

This analytical equation is valuable as a guide to define functional coefficients
for data reduction, but it can not replace the experimental calibration. The simpli-
fied assumptions (small perturbation, potential flow) and irregularity of the probes
in manufacturing make it necessary to calibrate each probe individually. This equa-
tion shows that for a given probe geometry, the pressure sensitivity of pitch angle
deperds on both a and B. Therefore, a complete experimental calibration matrix
at different combinations of a and S is needed due to the coupling between the

pressure sensitivities and flow angles.



3. CALIBRATION

The objective of calibration is to experimentally determine a set of pressure
data that can describe the probe’s response to a known flow field. In application,
total and static pressures, pitch, yaw angles, and the magnitude of velocity of
the unknown flow field should be obtained from the measured pressures and these

calibration data.

3.1. Transformation of Coordinates

Due to the constraint-of the existiﬁg probe support mechaniém, the angular
* position of the probe can only be changed through rotation of the probe about
its own axis and rotation of the mounting tube. A coordinate transformation is .

therefore needed to relate these angles to the pitch and yaw angles of the flow.

Asshown in Fig. 2, let the rotation of the probe be “azimuth angle”, ¢, and the
rotation of the mounting tube be “cone angle®, ¢. In the “azimuth-cone” calibration
(the probe is rotated with an angle ¥ about the x-axis, followed by a rotation of
the mounting tube with an angle ¢ about the z-axis), the transformation matrix

can be written as

/ 1 0 0 cos¢ —sing O
T, = (0 cosy —sindz)-.(sincﬁ cos ¢ 0)
0 siny cosy 0 0 1

( cos¢ —sin ¢ 0 )
= | cosysing cosycosd —siny |.

sinysing sintcos¢d cosy

Similarly, the transformation matrix for the “pitch-yaw” calibration (the prokz is
tilted forward or backward to provide a change in pitch angle, then rotated left or
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. right by a yaw angle) is
cosa O —sin'a cosf -—sinf 0
T, = 0o 1 0 -{sinf cosf O
siha 0 cosa 0 0 1

sinf cosfl 0
sinacosf —sinasinf cosa

(cosacosﬂ —cosasinf -sina)

During the probe calibration, the flow direction is aligned with x-axis, i.e.
(U,V,W) = (Us,0,0) in the x-y-5 coordinate. The velocity vector in the “azimuth-

cone”? coordinate is then - -

U, Uy cos¢
Vi =T1' 0 =U°° COB¢8in¢ . ' (2) ‘
AW, 0 sin ¢ sin ¢
Similarly, the velocity vector in the *pitch-yaw” coordinate is
U; U cosacosf
Vo |=T2-| 0 | =Us sin 8 . (3)
W, 0 sin acosf

The velocity vector should be independent of the coordinates, so we can equate

Eqgs. 2 and 3

cos¢ = cosacospf,
cosy sin¢g = sin ﬂ;

sin Y sin¢ = sinacosf.

Since we want to express the measured velocity vectors in terms of the pitch
and yaw angles, the calibration matrix should consist of a set of predertermined «
and B. In the actual experimental set-up, the angles are set by the azimuth and
cone angles. The corresponding ¢ and 4 for given a and f can be obtained by
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rearranging the above equation, the corresponding ¢ and ¢ for given a and S are

Y= a'n-l(:z;)’
. : 4
$ = tan~ (222 ?
=0 iy

An easier equation for the cone angle is ¢ = cos™(cosacosf), but arc-cosine -
cannot discriminate the positive and negative angles, therefore, ¢ is expressed as

arc-tangent in Eq. 4.

3.2. Normalization of Pressures

A typical way to normalize pressures is to take the free stream dynamic pres-
sure, g, as the reference pressure.” The dynamic head, which is independent of
the probe condition, is a constant in the flow field, therefore the fluctuations in the
measured pressure coefficients can not be smoothed by this constant. Using a local
measured value as the normalization parameter is a better way to reduce the scatter
in the experimental data®. A reasonable substitute would be the dynamic pressure
at the measurement point, but this is not a quantity that can be measured directly
from the pressure readings of the five-hole probe. Hence, the pressure difference
of the central hole and the averaged value of the fou; side pressures is taken to
normalize the pressure(®). As shown in Fig. 1, the pressure coefficients are defined
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P~ P,
C'Pn'_= '}?21':_""7'3':
P, —~ P,
Cprkﬁ‘:'}T‘l—:’ﬁs—)
P,-P, _
Cpcom=—},l—:-‘-}=,g'-s ‘ (5)
F;Pnaic
C'P.m.'c=—};;j_—%—,
P= P+ P+ P+ P
- = " . P

where Py and P_,m.-c are the total and static pressures at the measurement point.
Generally speaking, Piyar and P, are unknown quantities which depend on flow
" field. However, during the probe calibration in the wind tunnel, they are known
and equal to the free stream values, so all the four pressure coefficients can be

determined.

3.3. Calibration Results

The probe was calibrated in the Stanford low speed wind tunnel with nominal
free stream velocities of 20 and 40 m/s corresponding to Reynolds numbers of 4.0 x
10* and 8.1x 10* based on the probe tip diameter. The probe was set at one of the six
predetermined yaw angles and swept in 10° increments through the pitch angle, the
pressure coefficients were recorded at each calibration point. The calibration was
repeated and it was found that the data was repeatable. The calibration program

is listed in Appendix I.

The complete set of calibration data at R, = 8.1 x 10* is plotted in Figs. 3 to 6.
Figs. 3 and 4 show the values of Cppir.p and Cpyee at different @ and f. At moderate
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yaw angles, Cppias is a linear function of pitch angle; likewise, at moderate pitch
angles, Cpyqw only varies linearly with yaw angle. However, for the pitch and yaw
angles larger than 15°, the preésnre response is non-linear, and stronger coupling

between pitch and yaw can be observed.

Three dimensional surface plots of the total and static pressure coefficients at
different a and S are shown in Figs. 5 and 6. When ;:z,ﬂ 53 0, the central hole
measures the total pressure of the flow, therefore, Cpre has a maximum value of
0 at small @ and f§ as expected. The stagnation point departs from the central
hole as o and B increase, thereby decreasing Cpiotate Cpetatic 18 a measurement of
the averaged surface pressire of the four side holes, hence it has a maximum when
the probe is aligned with the flow. This maximum value depends on the probe
geometry, for the present probe, the maximum Cp,sas;, is around 1.0. When the
pitch and yaw angles increase, the pressure on the windward hole increases whereas
the pressure on the leeward hole decreases, theréby decreasing Cpyatic 38 shown in

Fig.6.

From these calibration curves, it can be observed that both total and static
pressure coefficients vary with flow angles. Therefore in the application, all the
unknown quantities including pitch and yaw angles, total and static pressures should

be interpolated from these calibration curves.

4. DATA REDUCTION

For a set of measured pressure coefficients, pitch aﬁd yaw angles are determined
from Cppiten and Cpyen- After a and B are obtained, Cpioqr and Cp,asic can be
determined from Figs. 5 and 6, therefore, the magnitude of the velocity can be
calculated by the interpolated total and static pressures. Since these coefficients
are coupled, a double interpolation is required. A data reduction procedure by two
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dimensional spline curve fitting is demonstrated in the following section.

Figs. 3 and 4 can be combined into one plot as Cp,,, versus Cp;;; for each
calibration point of a and g as shown in Fig. 7-a. As an example, let the local
measured pressure coefficients of an unknown velocity field be Cppi.s = 2.0 and
Cp,;,., = 2.5. A vertical line is drawn at Cppis = 2.0, this line intercepts the
constant yaw angle curves at six points as shown by the squares in Fig. 7-a. The
corresponding Cpy,, Values of these interceptions can be obtained from the ordinate.
Consequently, the variation of Cpy.e versus the calibrated yaw angles for Cpa;,ch =
2.0 can be plotted as shown in Fig. 7-b. This resulting monotonically increasiné
~ curve, when interpolated at Cp,,.=2.5, yields the measured yaw angle (8 = 17.9°
in this example). Similarly, the pitch angle can be obtained by drawing a horizontal
iine at Cpyaw=2.5'in Fig. 7-a, and following the same procedure to construct the :

Cppiten — @ curve, the resulting value is a = 18.5°.

Knowing the local pitch and yaw angles, individual curves can be drawn to
pass through the Cp,ri. — a data for different calibrated yaw angles as shown in
Fig. 8-a. Then, the variation of Cp,s4ic versus S for a = 18.5° can be plotted and
evaluated at B = 17.9° to obtain the static pressure coefficient as sizown in Fig. 8-b,
which gives a resulting value of Cp,arie = 0.90. Cpiotas can be evaluated in the same

manner, and the resulting value is Cpyorar = —1.01.

To check the dependency of the calibration on the Reynolds number, the above
example is repeated by using the calibration data at R, = 4.0 x 10%. The resultant
values are a = 17.3°, 8 = 16.9°,Cpiota = —0.84, and Cp,soric = 0.98. The cor-
respording changes are —6.5%(a), —5.6%(B), —6.7%(Cpriotat), and —3.0%(Cpytatic),
these errors are within the acceptable measurement error in the present set-up,
therefore, it is concluded that no significant changes in the pressure coefficients can

be attributed to the Reynolds numbers.



These graphic procedures have been replaced by individual spline curve fit-
ting through the calibrated data, and the adapted computer program is listed in
Appendix II. .

The magnitude of the velocity vector can be calculated by the Bernoulli’s equa-

tion,

Tf = J%(Plold - Pnlalic)) ’ : (6)

where Pi,ia1 and Pyyee. can be expressed as functions of Cpiotat and Cp,ygyic Tespec-

tively. Rearranging Eq. 5

-

Piotat = Py — Cpiotat( P, — P), o
Pitatic = P - CP:ulie(Pl - P)- ;

Combining Eqs. 6 and 7, U can be calculated directly from the measured P, P and

the interpolated values of Cporas and Cpytaric 28

U= \/%(Pl - P)(l - CPtotol + CPuch'c)' (8)

After the magnitude and direction of the velocity vector are obtained, the three

velocity components can be easily resolved by Eq. 3, i.e.

U =TUcosacosp,
V =Using, (9)
W = Usin acosf.



5. APPLICATIONS
As stated in the introduction, the objective of this study is application ori-
ented, therefore, some results of flow field measurements in steady vortical flows are

presented here to demonstrate its applicability.

A typical velocity vector plot in the cross plane is shown in Fig. 9 for a low
aspect ratio wing with weak tip blowing!¥. The velocity vectors are plotted on
the measuring station looking toward upstream. A well-defined tip vortex can be
observed in this figure, and the shear layer resulting from the spanwise loading dis-
tribution can be noticed by the rapid change in velocity direction near the lower
surface. The dash line represents the contour of the model projected on the mea-

suring plane. The coordinates are normalized by the half span /2.

Fig. 10 shows the total pressure contours for the same experimental condition,

the pressure loss coefficient is defined as

9o
The streamwise vorticity £ can be obtained from the measured velocity com-

ponents by
g==-2 (11)

Due to the relatively large spacing between the measurement points (0.25-in in this
example), additional errors can be introduced if the data points are used directly to
evaluate £. Therefore, spline curves were fitted to the measured cross flow velocities
td generate velocity vectors in smaller grids, and the numerical differentiation were
preformed by the central differencing scheme. The contour program is listed in

Appendix II.

The resultant contour plot of vorticity is shown in Fig. 11 for the same case. By
comparing Figs. 10 and 11, it can be observed that the total pressure contours are
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very similar to the vorticity contours. The regions of high total preasure loss almost
coincide with the regions of high streamwise vorticity, but the vorticity contours

are better defined and more symmetrical in the core region.

Fig. 12 shows the circumferential velocity distribution in the cross plane of a tip
vortex for the same wing at a = 7° without blowing. The different symbols represent
different spacing between the measurement points. The data essentially follow a
single curve, indicating the repeatabiﬁty is very good. The velocity distribution
near the core can be resolved by the smallest measurement spacing of 0.05 in, which
is smaller than the probe diameter. The solid line represents the circumferential
velocity distribution of a potential vortex of the corresponding strength. Except for
the core region, the agreement between the measured data and the potential vortex
is satisfactory on the right half of this figure. The deviation on the left half is due

to the shear layer resulting from the wing.

6. CONCLUDING REMARKS

Procedures for the calibration of a five-hole probe have been developed and
documented, and an efficient data reduction scheme has been demonstrated. No
gsignificant changes in the calibration data were found within the flow speeds of

interested (20-40 m/s).

Automatic flow mapping programs have been interfaced with the existing mini-
computer system. The probe was employed to survey the three dimensional flow
fileds of wing tip vortices. Three components of velocity vector, total and static
pressures were readily obtained from the measurements. Quantitative values of the
vorticity were derived from the measured data. The present technique was shown

to be able to resolve detailed quantities in vortical flows.
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Pitch Plane

Figure 1. Schematic of the five-hole probe and velocity resolution.

z-axis

“azimuth angle”, ¢

_.,@,__

X-axis

* — - ——

“cone angle”, ¢ @
|

Figure 2. The *azimuth-cone” transiormation.

13



Coten
o




Figure 4.  Typical calibration curves for Cpy,y at different a and 8.
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Figure 9. Typical velocity vector plot of a tip vortex in the cress plane.
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Figure 10.  Total pressure contours. (unit in % AC,r)
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Circumferential Velocity Distribution, a=7"
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Figure 12. Circumferential velocity distribution of a tip vortex.



APPENDIX 1. The Probe Calibration Program

ORIGINAL PAGE IS

OF POOR QUALITY
PROGRAM PSCALB
JOHNSON LEE, JUL-09-835
S5-HOLE PROBE CALIBRATION PROGRAM
DIMENSION VO(S).VC(S).VM(S).P(S),ALFAss),BETA(B)
DIMENSION CPYAW(8,6),CPPCH(6,6),CPTOT(6,6),CPSTA(6,6)
OPEN CALIBRATION DATA FILE, THE FILE NAME IS GIVEN
CALL OPENFL(15,9)
SET TUNNEL CONDITIONS.
TYPE »,’ ENTER TOTAL TEMPERATURE (deg.C)?’
ACCEPT s, TTOT
TYPE »,' ENTER AMBIENT PRESSURE (in.HG)?®
ACCEPT ¢, PBARO
Ces+ Patm in Ibf/ft.sq, Rtot in deg.R
PATM=B47 . «PBARO/12.
RTOT=1.8+TTOT-+492. .
C  CACULATE DENSITY FROM THE IDEAL GAS LAW
RHO=PATM/53 . 3/RTOT
Csss Rho IN Lbm/ft.cu; NOW, 1(Lbm/Ft.cu)=16.052(Kg/m.cu)
. RHO=RHO*16.052
C ASK FOR DESIRED Uinf?
TYPE ¢, ENTER UINF (M/SEC)?*
ACCEPT », UINF ’
Cees From tunnel calibration: q = 1.63 + 1201.5¢h ) ¢
Cess  h("H20 across taps), q(Nwtn/m.sq)
DP=( . 5+RHO*UINF++2-1.63)/1201.5
TYPE »,* DP(DYNAMIC PRESSURE) TO BE SET AT *,DP,' [IN.H20’
TYPE »,* ENTER DP (IN.WATER)?'
ACCEPT +,DP
UINF=SQRT(2.+(1.63+1201.5+DP)/RHO) .
Csss Probe diameter : 0.125in; 1(in)=0.08254(m)
DIA=9.12520.08254
Csee Air viscosity mu=t1.83e-6 (kg.sec/m.sq)
GCMUm1 . 83E~-6
RE=D[A+UINF*RHO/GMU
TYPE 919, TTOT,PBARO,DP,UINF,RE
910 FORMAT(///5X, ' AMBIENT TEMP=’,F5.1,' DEG.C.'/
5X, 'AMBIENT PRESSURE =’ ,F7.3,' IN.HG.'/
5X, 'OP(DYNAMIC PRESSURE) =',F7.3,' IN.WATER'/
10X, 'FREE STREAM VEL =' ,F7.3,' M/S'/
19X, 'REYNOLDS NO. =’ ,F9.9///)
PAUSE ° OPEN THE 5-~TH HOLE®
calibrate the transducer sensitivity
scanivaive "home’ opens to atmosphere
CALL HOME
Five transducers: from A/D ch.15 to ch.19, Take zero pressure reading
CALL ADMCH(15,5,v9) _
Set calibr. pressure at 8.5 psi on scannivalve ch.5-8
CALL STEP
PAUSE °'SET CALIBR. PRESSURE AT ©.5 psi(CLOCKWISE), <CR> TO START.'’
CALL ADMCH(15,4,VC)
PAUSE °SET CALIBR. PRESS. FOR THE 5-TH HOLE, <CR> TO START’
CALL ADMCH(19,1,vC(5))
CALL STEP
PAUSE 'CONNET 5-TH HOLE.®
Take tunnel total & static pressures, Ch.9 & 19.
CALL ADMCH(15,2,VM) ’
Convert voltage into psi

00 OO0

(o]

L 3R BN N J

O O 0o

O o
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ORIGIIAL PAGE
OF POOR QUAL@-W

FSTAna. 32 (W2} va(a)) (VoLEIve2)

C Now, recdy to take calibr. data, calibration in the pitch~yaw coordinate,

Cc #1: Center, §2: Right, §3: Left, #4: Lower, §5: Upper
DELTA=10.
DO 100 I=1.,8
DO 169 J=1,8
BETA(I -—25 +{(I-1 ;‘DELTA
ALFA(J)==25.4+(J—1)sDELTA
TYPE 900,ALFA(J),BETA(I)
gee FORMAT(//ZX ' Set Alfa =’ ,F5.1,’ Beta =',F5.1,5X, ‘<CR> to start’)
PAUSE

C subroutine ADMCH(starting channel no., no. of channels, output voitage)
CALL ADMCH(15,5,VM)
DO 119 K=1.,5
110 P(K)-O.S-(vus ;—VO(K))/(VC(K)-VO(K))
PBAR=9.25¢(P(2 +P(3;+P 4)+P(8))
DENOM=1 . /(P(1)-PBAR
CPYAW( I, J )= P§2 423; »DENOM

CPPCH(1,J 4)-P(5))+DENOM
CPTOT(I,J)= ~PTOT) «DENOM
_ CPSTA(I,J)=(PBAR-PSTA) sDENOM
TYPE s+, 'Cyaw,Cpit,Ctot,Csta=’,CPYAW(I,J),CPPCH(I, J) CPTOT(1.4),
. CPSTA(I,J)
100 CONTINUE
C  STORE DATA IN THE DATA FILE (PSCALB.DAT)
WRITE(15,901) RE,UINF,TTOT,PBARO,DP,PSTA,PTOT
DO 200 I=1,6
DO 200 J=1,6
200 WRITE(15,902) BETA(I),ALFA(J).CPYAW(I.J),CPPCH(I,J),CPTOT(I,J)
+  ,CPSTA(I.J)
CLOSE(UNIT=15,DISPOSE="SAVE")

90t FORMAT(E10.2,6F7.2
902 FORMAT(2F6.1,5F9.4
STOP
END



APPENDIX II. The Flow Mapping Program

PROGRAM PSMAPP
JOHNSON LEE, JUL-09-85
5~HOLE PROBE FLOW MAPPING PROGRAM

THIS PROGRAM DOES THE AUTOMATIC PROBE TRAVERING IN THE CORSS
PLANE, AND TAKE DATA AT EACH GRID POINT.

LINK PSMAPP,OPENFL,SPLINE,PSMNA,SY :MNCSNG, SY: TRALIB
DIMENSION WM(5), P(S; .ALFA(6) ,BETA(8)

DIMENSION CPYAW(S§,68),CPPCH(6,8),CPTOT(6,8),CPSTA(S, 8)
DIMENSION SCYPgB 6; .ELYP(S, 6; ELPYgB 6; SCPYss ]

OO0 OOO0 OO0

OIMENSION SCSP(6,6),ELSP(6,6),SCTP(6,6),ELTP 6.6§
DIMENSION X(6),.Y(6).YY(6),SC(6),EL(8),DA(6),DB(6),0C(6)
NC=6
RAD=3.14159/180.
C  SET TUNNEL CONDITIONS.
TYPE »,' ENTER TOTAL TEMPERATURE (deg.C)?’
ACCEPT =, TTOT
TYPE »,’ ENTER AMBIENT PRESSURE (in.HG)?’
ACCEPT », PBARO
Csess Patm in lbf/ft sq, Rtot in deg.R
PATM=847 . sPBARO/12.
RTOT=1.8+TTOT+492.
C  CACULATE DENSITY FROM THE IDEAL GAS LAW
RHO=PATM/53. S/RTOT
Cees Rho IN Lbm/ft.cu; NOW, 1(me/Ft cu)=16.052(Kg/m.cu)
RHO=RHO*16.052
C ASK FOR DESIRED Uinf? -
TYPE =, ENTER UINF (M/SEC)?’
ACCEPT ¢, UINF
Cees From tunnel calibration: q = 1.63 + 1201.5sh
Csss  h:("H20 across taps). q:(Nwtn/m.sq)
DP=( .5¢RHOsUINF»+2-1.63)/1201.5
TYPE =, DP(DYNAMIC PRESSURE) TO BE SET AT ',DP,’ IN.H20'
TYPE +,' ENTER DP (IN.WATER)?'
ACCEPT »,DP
UINF=SQRT(2.+(1201.5+DP+1.63)/RHO)
TYPE 910, TTOT,PBARO,DP,UINF
910 FORMAT (///14X. ' AMBIENT TEMP=",F6.2,* DEG.C.'/
. 9X, 'AMBIENT PRESSURE =',F6.2,' IN.HG.'/
5X, 'DP(DYNAMIC PRESSURE) =’ Fs 2,’ IN.WATER'/
. 10X, ’ FREE STREAM VEL =’,F6.2,° M/S'//)

*

TYPE »,’ ENTER ANGLE OF ATTACK (DEG.)?’
ACCEPT « ATTK

C THE BLOWING RATIO,
TYPE »,’ ENTER CMU?*
ACCEPT «,CMU
TYPE «,' ENTER MEASURED PLANE, Xt/C?’
ACCEPT +,XOC

C OPEN DATA FILE TO BE STORED,
TYPE «,’' OPEN THE DATA FILE TO STORED THE VEL. FIELD,’
CALL OPENFL(ZS 9)

C READ THE OLD CALIBRATION DATA FILE(PSCLB1.DAT),
OPEN(UNIT=15,NAME="P5CLB1.DAT’ ,TYPE="OLD")
READ(15,+)
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DO 100 I=1, Nc'
DO 100 Jm=1,NC

129 READ(15,s) BETA(I) »ALFA(J) ,CPYAW(I,J),CPPCH(1,d),CPTOT(I,J)

s ,CPSTA(I,J)

CLOSE(UNIT=15,DISPOSE="SAVE' )
C CROSS SPLINE CURVE FIT FOR THE CALIBRATION DATA

DO 110 I=1,NC
CALL EX12D(I,NC,X,CPPCH,1,1
CALL EX12D x.nc. ,CPYAW, 1,1
CALL SPFIT(NC,X,Y,SC,EL, DA 0B8,0C)
CALL EX120(I, ﬁ.sc.sc

CALL EX12D(I, EL.ELYP.O 1

i10 CONTINUE
DO 120 J=1,NC
CALL EX12D{(J,NC,X,CP YAW.!.O;
CALL EX12D(J,NC,Y,CPPCH,1,0
CALL SPFIT(NC,X,Y,SC,EL,DA,DB,DC)
CALL EX12D(J,NC,EL,ELPY,0Q, 6;
CALL EX12D J.NC.SC.SCPY.Q o

120 CONTINUE .
DO 130 I=1,NC

CALL EX12D(I,NC,Y,CPSTA,1,1)
CALL SPFIT NC.A FA,Y,SC,EL,DA,DB,DC)
CALL EX12D0(1I 1
CALL EX12D(I,

130 CONTINUE
DO 149 [=1,NC
CALL EX12D0(I,NC,
CALL SPFIT(NC,AL
CALL EX120(I,NC,
CALL EX12D(I,NC,EL,EL

149 CONTINUE

C Set the cannivaive to home,
CALL HOME

C Toke tunne! total & static pressures, Ch.1 & 2.
CALL ADMCH(8,2,WM)

C Convert voltage into psi, sensitivity: @.1 psi/volt
PTOT=9. 1tvué13+PATM/144

PSTA=® ., 1sVM(2)+PATM/ 144,
WRITE(25,901) ATTK,CMU,XOC,UINF,DP,PSTA,PTOT
9ot FORMAT(X,9F8.2)
c
C Now, Ready to take the measurement
(o}

TYPE »,' ENTER THE INITIAL POSITION, (Y9,Z0)?'
ACCEPT »,YM,ZM
CALL TRINIT

C Origin is located at the lower-right corner when facing the flow,

500

C Get

TYPE »,

ACCEPT

TYPE =,

ACCEPT

' ENTER THE TOTAL VERTICAL DISTANCE (INCH)?*®
+,Z2T0T

* ENTER INCREMENT IN THE VERTICAL DIRECTION?®
¢, D2

TYPE «,’ ENTER THE TOTAL HORIZONTAL DISTANCE (INCH)?’
ACCEPT »,YTOT

TYPE =,

* ENTER INCREMENT IN THE HORIZONTAL DIR.?"

ACCEPT ., DY
Z=ZTOT/DZ+1
NY=YTQOT/DY+1

rid of

the round-off error,

DY=DY+0.0000001
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DZ=DZ+0.00000801

TYPE o, °

TYPE ¢,' Z AXIS: Ztot, Dz=',ZTOT,DZ

TYPE »,' Y AXIS: Ytot, Dy=',YTOT,DY

TYPE ..a .

TYPE «," ENTER @, IF THIS IS 0.K.¢°

.ACCEPT ,IFF

IF(IFF.NE.@) GO TO 5¢@

WRITE(25,902) NZ,NY
902 FORMAT(214) )
C 5-Hole Probe: From scannivalve ¢h.5-8,; Center hole: the S5~th transducer

c #1: Center, #2: Right, #3: Left, §4: Lower, #5: Upper

c ;

C the S5-hole probe is connected at the 2nd scannivaive channel,
CALL STEP .

00 510 IH=ti NY

DO 539 Ivm=1i ,NZ

CALL ADMCH(8,5,VM)

DO 200 K=1,5
200 P(K)=0.1eWM(K)

PBAR=9 .25+ (P(2)+P(3)+P(4)+P(5))
DENOMm1. /(P{1)-PBAR)
CPY’§P§2)-P 3 ;aoenou
CPP=(P(4)-P(5))+DENOM
C Interpolate for Alfa, Beta, CPsta & CPtot

DO 219 I=1,NC

CALL EX12D(I,NC,X,CPPCH,1,1

CALL EX12D(I,.NC,Y,CPYAW, 1,1

CALL EX12D(I,NC,EL,ELYP,1,1

CALL EX12D(I,NC,SC,SCYP,1,1
219 CALL SPGET(NC,X,Y,SC,EL,CPP,YY(1),YP,YDP)

CALL SPFIT(NC,YY,BETA,SC,EL,DA,D8,DC)

CALL SPGET(NC,YY,BETA,SC,EL,CPY,YAW,YP,YDP)

DO 220 J=1,NC

CALL EX12D(J,NC,X,CPYAW,1,0
CALL EX12D(J,NC,Y,CPPCH,1,0
CALL EX120(JsNC,SC,SCPY,1,9
CALL EX12D(J,NC,EL,ELPY,1,0)
220 CALL SPGET(NC,X,Y,SC,EL,CPY,YY(J),YP,YOP)

NC,X,Y,
CALL SPFIT(NC,YY,ALFA,SC,EL,DA,DB,DC)
CALL SPGET(NC,YY,ALFA,SC,EL,CPP,PITCH,YP,YDP)

DO 230 I=1,NC
CALL EX12D(I,NC,Y,CPSTA,1,1
CALL EX120(I,NC,SC,SCSP,1,1
CALL EX12D(I,NC,EL,ELSP,1,1
230 CALL SPGET(NC,ALFA,Y,SC,EL,PITCH,YY(I),YP,YDP)
CALL SPFIT(NC,BETA,YY,SC,EL,DA,DB,DC)
CALL SPGET(NC,BETA,YY,SC,EL,YAW,CPS,YP,YDP)

DO 242 I=1,NC
CALL EX120(I,NC,Y,CPTOT,1,1) "
CALL EX12D(I,NC,SC,SCTP,1,1
CALL EX12D(I,NC,EL,ELTP,1,1
240 CALL SPGET(NC,ALFA,Y,SC,EL,PITCH,YY(1),YP,YOP)
CALL SPFIT(NC,BETA,YY,SC,EL,DA,D8,0C)
CALL SPGET(NC,BETA,YY,SC,EL,YAW,CPT,YP,YDP)
g Finally, get the pitch, yow, Cps, and Cpt!
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Cess 1, (Nt/n 3q)=0.0001451 (p si)

DELTP=(P(1)-PBAR)*(1. +cps-cpr)/o 2001451
IF(DELTP.LE.@.) DELTP=@.

VEL=SQRT(2. sDELTP/RHO)

VX=VEL «COS PITCH‘RAD;OCOSsYAWtRAD;
VZ=VELsSIN(PITCHsRAD) +COS (YAWsRAD
VY=VELsSIN(YAWsRAD)

TYPE 800,YM,ZM,VEL,PITCH,YAW,VX,VY,VZ

809 FORMAT(//zsx. gy z; = (*,2F8.2,')"/

. 4%,'Vel(m/s), Pitch & Yaw (deg) =’ 3F8.3/
* 12X,* Vx, Vy, Vz (m/sec) =’ ,3F8.3)
WRITE(25, 963) VEL,PITCH,YAW,CPS ,CPT

903 FORMAT(2(F5 2,X), 2(F7 3.X), F7. 3)

IF(IV.EQ.NZ) GO TO 530

(o] the probe is moving up and down in citernate sweeps to save time,
DDZm(~1)ee(IH+1)sD2Z
C first, traverse the probe in Z—-axis at fixed Y,
CALL RMOVEZ(DDZ)
ZZ=22+D02
ITIC=24+DZ
c wait o little while for the probe to get the position
CALL ISLEEP(9,0,0, ITIC)
ZM=ZM+0DZ
530 CONTINUE
IF(IH.EQ.NY) GO TO 510 s
(o] now, the probe is moving in the Y-axis,

CALL RMOVEY(DY)
YM=YMHDY
ITIC=24s0Y

510 CALL ISLEEP(@,0,0,ITIC)

000000000 O

N} =

get the probe back to the original position,
CALL RMOVEY(-YTOT)
ITIC=24+YTOT
CALL ISLEEP(9.,0.,0,ITIC)
YMuYM~YTOT
DDZ=~(~1) ##IH*ZTOT
CALL RMOVEZ(DDZ)
ITIC=2442T0T
CALL ISLEEP(@,0,0,ITIC)
M=ZM+D0Z
CLOSE(UNIT=25)
CALL TRESCP
STOP
END

SUBRQUTINE EX12D(JK,N,AR1,AR2,10,KORJ)

THIS SUBROUTINE INTERCHANGES AN ARRAY TO AND FROM 1-D & 2-D
JK: the fixed index in the 2-D array,
N: the no. of datg in the 1-D array,
AR1: the 1-D array of N,
AR2: the 2-D array of NxN,
[10: @: put 1-D data into 2-D array, 1: put 1 row of 2-D data into 1-d array
KORJ: @: the fixed index is the 2nd one, i.e. change 1 row in the 2-D data;
1: the fixed index is the i1st one, 1.e. change 1 coiumn in the 2-D data.

DIMENSION AR1(6),AR2(6,6)
IF%KORJ) 49,40, 1

IF(10) = 20,20,2

DO 10 K=1,N



AR1(K)=AR2(JK,K)
RETURN

DO 39 K=1,N
AR2(JK, K)-AR1(K)
RETURN

IF(10) 7a.7a.5e
DO. 60 J=1,N
AR1(J)=AR2(J, JK)
RETURN

DO 80 Jmi,N
AR2(J, JK)=AR1(J)
RETURN

END

SUBROUTINE SPFIT(N,X.Y,G,DX.A,B,C)

This subroutine fits a spline curve through a set of given data points,

input: N: no. of data points,
X: the independent data array,
Y: the dependent data array,
output: G: the array which hoids the spline curve coefficients,
- DX: the segment length array for X,
dummy working space: A,B,C, all have the dimension of N.

OO0 OOOOO0 O

o000 O

Reference: "Best Approximation Properties of the Spline Fit",

Walsh, J.L., ete, Journal of Mathematics and Mechanics,
Vol. II, No. 2, pp. 225-234, 1962.

DIMENSION X(1),Y(1),0X(1),A(1).B(1),C(1).6(1)
DO 1 I=1,N-1
DX(I+1)mx(I4+1)-X(1)
DO 2 =1 ,N=2
Y(l+2)-Y(I+1))/Dx(I+2) (Y(I14+1)=Y(1))/0X(1+1)
I Dx(I+1)+Dx(I+2))/
I -DX I+t /6
I :DX I1+2 /6
1 =C(1)/8(1)
=2 ,N-2

§.ca;,agl§'°“ 0

- g e

1

0@000@ O0O>DO

MOM’\
>~
Lo
i
N
f

x)*(G(I)-A(I)‘B(l -1))/8(1)
N-2)=8(N-2)

G(K%‘?(K)~C(K)06(K+1)

KaeN—{

G(K)=G(K~1)
G(1)=a.
G(N)=9.

RETURN
END

SUBROUTINE SPGET(N,X,Y,G,DX,AX,AY AYP ,AYDP)

This subroutine generates the dependent value AY for a given AX,
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00000000000

input: N: no; of data points ,

X: the independent variable array,

Y: the dependent varcibie array,

G: the spiline curve coefficients from SPFIT,

OX: the segment length array from subroutine SPFIT,
AY: the independent variabie to be interpoiated,

output: AY: the corresponding dependent variable for AX,

AYP: the tirst derivative at AY, i.e. dy/dx,
AYDP: the second derivative at AY, i.e. y".

EIgENSION X(1).Y(1).6(1).0%(1)

IF%AX—X%K; 83,83,85
IF(AX~X(N)) 87,87,88
K=K+1
GO TO 84
K=N
FFoG(KK) « (X(K)-AX)
FFaG(KK) e (X(K)=AX)ee3/(6.2DX(K))+G(K) s (AX=X(KK))*+3/(6.+DX(K
AY=FF4(Y K)7DX(K)-G(K{SDX(K)}B?;c(xxlxéKK))( N=e3/( )
AYmAY+(Y(KK) /DX (K)=G(KK) sDX(K)/8. ) (X(K)=AX :
BFuG(K)* (AX=X(KK))s22/(2.eDX(K))~G(KK)s(X(K)-AX)*22/(2.+0X(K))
AYP=BF+(Y(K)~Y(KK))/DX(K)-DX(K) s (G(K)-G(KK))/6.
AYDP=G(KK) # (X(K)-AX)/DX(K)+G(K) s (AX-X(KK) ) /DX (K)
ESTURN

D

31



APPENDIX III. The Vorticity Contour Program

JOHNSON LEE, MAR-13-86

THIS PROGRAM PLOT THE VORTICITY CONTOURS ON THE CROSS FLOW, AND
INTEGRATE THE VORTICITY INSIDE A GIVEN CONTOUR TO OBTAIN THE
TOTAL CIRCULATION. ALL THE SUBROUTINES ARE IN THE NASA AMES
VAX=-11 LIBRARY (DISSPLA, MAP, ETC...)

LOGICALs1 NFILE(10)
COMPLEX ZBL(8),22 .
DIMENSION PX%Z?).PY(21).SCPT(21.21).ELPT(21.21).VORT(31.31)

QOO0 OO0O

DIMENSION XY(31,31,2),0(31,31,2),V¥(21,21),vZ(21,21
DIMENSION YY(21),YYY(21),SC(21),EL(21).01(21),02(21),03(21)
DIMENSION RWK(480@),IWK(6@),XGRID(31),YGRID(31),PLEV(4@)
DATA NFILE/6+°@°,'.%,'D",'A*,'T*/

RAD=3.1416/180.
C OPEN DATA FILE TO BE READ,"
TYPE »,' ENTER THE DATA FILE NAME?’
ACCEPT 8@, (NFILE(J),J=1,8)
OPEN(UNIT=25,FILE=NFILE,STATUS='0LD")
READ(25,*) ATTK,A,A,UINF,PATM,PSINF,PTINF
READ(25,+) Z0,YQ,2TOT,YTOT,DZ,0Y
ZM=29
YMm=Y9
NZ=ZTOT/DZ+1
NY=YTOT/DY+1
DO 100 IY=1,NY
DO 119 IZ=1,NZ
READ(25,») VEL,PITCH,YAW,DPT,DPS

1ZZ=12 .
IF((1Y/242-1Y).EQ.9) 1ZZ=NZ-1Z+1
1YY=1Y

C REVERSE LEFT AND RIGHT IF ATTK>®,

IF(ATTK.LT.9.) GO TO 111

1YY=NY=1Y+1

YAWm—YAW

11 VY%IZZ.IYY)-VELOSINzPITCHtRAD)OCOS(YAWoRAD)/UINF
vZ(1ZZ, 1YY)=VEL*SIN(YAWsRAD) /UINF

IF(IY.EQ.1) PX(1Z)=2Mm/9.
ZM=ZM+-DZ

110 CONTINUE
IFEATTK.GT.G.) THEN
PY(IYY)=1.-YM/9.
ELSE
PY(IYY)=YM/9.-1.
ENDIF
YM=YMHDY

100 CONT INUE
CLOSE(UNIT=25)

TYPE »,' ENTER THE GRID SIZE? (NX and NY)?'
ACCEPT + ,NGX ,NGY
ocx:gpxgnz)—Px§1;g/ﬁ~cx—1;
DGY=(PY(NY)-PY(1)3/(NGY-1
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C SPLINE CURVE INTERPOLATION TO REFINE THE DATA SET

00 133 IY=1,NY
CALL EX12D(NZ,YY,IY,VY,1,0)
CALL SPFIT(NZ,PX,YY,SC,EL,D1,D2,03)
CALL EX120(NZ,SC,1Y,SCPT,®,0

133 CALL EX12D(NZ,EL,1Y,ELPT,0,0

DO 13@ I=1,NGX
DO 130 J=1,NGY
CYY-PYE }+DGY-§J-1;
CXX=aPX( 1)4+DGXe (I-1
C INTERPOLATE FOR VY,
DO 135 [Y=1,NY
CALL EX12D(NZ,YY,1Y,VY,1,0)
CALL EX12D(NZ,SC,1Y,SCPT,1,0
CALL EX12D(NZ,EL,IY,ELPT,1,0
135 CALL SPGET(NZ,PX,YY,SC,EL,
CALL SPFIT(NY,PY,YYY,SC,EL
CALL SPGET NY.PY. »SC,EL,CYY,CLV,

xvi 1,4.1 ;-cxx
xv(l,J,2)=CYY
Q(1,J,1)=CLV
130 CONTINUE

¢

DO 143 IY=i,NY
CALL EX12D(NZ JYY,1Y,VZ, 1
CALL SPFIT(NZ,PX,YY,SC,E
CALL EX120(NZ,SC,1Y,SCPT
143 CALL EX120(NZ,EL,IY T

DO 140 I=1,NGX

DO 140 J=1i ,NGY

CYY=PY 1;+DGYt£J—1g

CXX=PX(1)+0GX=(I~1
C INTERPOLATE FOR VZ,

DO 145 IY=1,NY

CALL EX12D NZ.YY 1Y,vZ,1,0)

CALL EX120(NZ,SC, IY.SCPT.i.O;

CALL EX12D(NZ,EL,IY,ELPT,1,0

XX,YYY(1Y),YP,YDP)
.81.02.03

)

YP,YOP)

145 CALL SPGET NZ PX,YY,SC,EL,CXX,YYY(IY),YP,YDP)
CALL SPFIT(NY,PY,YYY,SC,EL,D1,02,03)
CALL SPGET(NY,PY,YYY,SC,EL CYY.CLV.YP,YDP)

(9]

Q(I1,J,2)=CLV
CONTINUE

»
S

CALL VORTIC(NGX,NGY,XY,Q,VORT)
NOW READY FOR THE CONTOUR PLOT,
PACKAGE,

00000 O

CALL DIP(58, 'PLOT.DIP’,8)
CALL PAGE(11.,8.5)

CALL NOBROR

CALL HWSCALé'SCREEN')
CALL PHYSOR(1.5,1.5)

CALL NOCHEK

CALL GRACE(Q.0)

ALL THE SUBROUTINES HERE ARE ADOPTED FROM THE "DISSPLA" PLOTTING



CALL AREA2°(O 8.)

TYPE »,' ENTER THE PLOT AXIES: Xmin, Xmax, Ymin, Ymax?'
ACCEPT ¢, XMIN, XMAX, YMIN, YMAX
CALL GRAF(XMIN 0. 25 XMAX , YMIN, 8. 28, YMAX)

C  SEARCH FOR THE MAX. AND MIN. VORT. VALUES

230

VWAXw~-100000.

VMIN= 100000.

DQ 230 J=1,NGX .

DO 230 [w=1,NGY.

xGRlos ;-XY 1.4, 1

YGRID(J)=XY¥(1,J,2

IF(VORT(I, Jg .GT.VMAX \MAX-VORT&I.J}
IF(VORT(I.J).LT.WMIN) VMIN=VORT(I,J
CONTINUE

TYPE «,’' Vmax, Vmin =’ ,VMAX,VMIN

C ASK FOR CONTOUR LEVELS TO BE PLOTTED,

249

++

250

C NOwW,
3o1

310

TYPE «,' ENTER NO. OF CONTOUR LEVELS TO BE PLOTTED?’

ACCEPT o NLINE

DVORT=( VMAX-VMIN)/(NLINE-1)

DO 240 I=1,NLINE

PLEV(1)=VMIN+(I-1)+DVORT

TYPE ,' 1 =°,1,’ VORT =’ ,PLEV(I)

CALL DASH

IS1Z1=1000

1S122=20

IXCONm1

IYCON=1+1S121

ICK=1S1Z1+1YCON

INADw=1

ILEV=ISIZ2+1

INPL=ISIZ2+1LEV

DO 250 I=1,NLINE

IWK( INAD ) =0 _

CALL MAP(PSI.NGX ,RWK(IXCON), Rm(tvcou) 1, 2 PLEV(I),
IWKiINAD} ,IS121,15122.RMK(ICK), 1,1, NGX,NGY,
IWK(ILEV),XGRID,YGRID,1)

NLINS=IWK( INAD)

IWK(NAD )=1

0O 258 LINE=1,NLINS

I1-IWK(INAD-1+LIN5;

NPTS=IWK({ INAD+LINE)-I1

IX=IXCON—1+11

1Y=IYCON~1+11

CALL CURVE(RWK(IX) ,RWK(IY),NPTS,0)

CONTINUE

CALL RESET$'ALL')

CALL .ENDPL(@)

CALL DONEPL

READY FOR THE CIRCULATION INTEGRATION,

TYPE =, ENTER: @ IF WANT TO INTEGRATE FOR CIRCULATION?®

ACCEPT s, IFF

IF(IFF.NE.@) GO TO 999

TYPE »,' ENTER NO. OF CORNERS? (@ TO STOP)’

ACCEPT +,NBL

DO 310 K=1,NBL

TYPE »,’ ENTER COUNTER-CLOCKWISED PT (X,Y) FOR #°,K
ACCEPT »,2X,2Y

ZBL(K)=CMPLX(ZX,2ZY)



CRIGHNLL b

OF POCR GUALITY
C  INTEGRATE VORTICITY INSIDE THE POLYGON,
SUW=@

0O 350 I=1,NGX

DO 350 J=1,NGY

ZZ=CMPLX(XY(1,J,1),XY(1,J,2))

DO 360 Kk=1,NBL

KKPw=14+MOD (KK, NBL)
C REJECT THE POINT WHICH IS OUTSIDE THE POLYGON,

IF(AIMAG( (ZZ-ZBL(KK) ) sCONJG(ZBL(KKP)-ZBL(KK))) .LT.9.)GO TO 350
360 CONTINUE

SUM=SUMHVORT (1, J) sDGX*DGY
350 CONTINUE

TYPE »,’ GAMMA=',SUM . : .

GO TO 301
80 FORMAT (6A1)
999 STOP
END

SUBROUTINE VORTIC(IDIM,JDIM,XYZ,Q,F)
Calculate x-component of vorticity FOR A 2D DATA cs
du/dy-dv/dx

DIMENSION XYZ(IDIM,JDIM,2),Q(IDIM,JDIM, 2),F(IDIM,JDIM)

Loop through each point in the plane, calculoting velocity derivatives and
metric terms using central differencing in the interior and dropping to
first order at the boundaries. °

AOOOO0 0000000

DO 10 Jm 1,JDIM
DO 10 I= 1,IDIM
IF (I1.EQ.1) THEN
UXI = Q§I+1.J.1;-Q€I.J.1;
vXI = Q(I+1,4,2)-Q(1,J,2
XX] = XYZiI+1.J.1;—XYZ§I.J.1;
YXI = xXYZ(1+1,J4,2)-XYZ(1,J.2
ELSE IF (I.€Q.IDIM) THEN
UXI = oéx.a.t;-oéx-1.¢,1;

vxI = Q(1,d,2)-Q(1-1,4,2
XX = xvzér e 1;-XY2§I 1,9 1;
YXI = XY2(1,J,2)=-XYZ(I-1,J,2
ELSE
UXI = .5« Q§I+1,J.1)-Q§I 1.J.1);
vXI = .5+(Q(I1+1,4,2)~Q(I-1,4,2)
XXI = . 5e XY22I+1 W 1;—XYZ(I-1.J ;;
YXI = . 5e(XYZ(I+1,J,2)-%XYZ(1~1,4,2
ENDIF
IF (J.EQ.1) THEN
UETA= 021.J+1.1;—Q§I.J.1;
VETA= Q(1,4+1,2)-0(1,4,2
XETA= XYZiI.J+1,1;—XYZ$I.J.1;
YETA= XYZ(I,J+1,2)-xY2(1,J,2

ELSE IF (J.EQ.JDIM) THEN
UETA= oél.d.1g-Q§I.J—1.1)
VETA= Q(1,J4,2)-Q(I,J~-1,2)
XETA= XYZ(I,J,1)=XYZ(1,J=~1,1)
YETA= XYZ(1,J,2)-XY2(1,4-1,2)



ELSE
UETAm ,Se Qzl.J+1.1g-O§I =11
VETA= . 5+(Q(I,J+1,2 J-1,2
XETA= . 5+(XYZ(I,J+1, 1}-XYZ I,d-1,1
YETA= S (XYZ(I,Jd+1,2)-XY2(1,9-1,2
ENDIF

F(I,J)m (~UXIeXETA+UETAsXXI)=(VXIsYETA~VETAsYXI)
190 CONTINUE

RETURN
END
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